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Abstract: We present, theoretically and experimentally, diffractionless 
optical beams displaying arbitrarily-shaped sub-diffraction-limited features 
known as superoscillations. We devise an analytic method to generate such 
beams and experimentally demonstrate optical superoscillations 
propagating without changing their intensity distribution for distances as 
large as 250 Rayleigh lengths. Finally, we find the general conditions on the 
fraction of power that can be carried by these superoscillations as function 
of their spatial extent and their Fourier decomposition. Fundamentally, 
these new type of beams can be utilized to carry sub-wavelength 
information for very large distances. 
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Introduction 

The diffraction limit, first defined by Ernst Abbe in 1873, is a fundamental limit on the 
diffractive imaging resolution of optical systems [1]. This is the fundamental constraint on the 
smallest spot into which a light beam can be focused by an optical system. The diffraction 
limit is determined by the extent of spatial spectrum of the beam – that is, by the fastest-
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oscillating Fourier component of the optical field. This constraint has far reaching 
implications ranging from the maximum attainable resolution with optical diffractive 
microscopy, to the limit on the accuracy of laser machining processes. Essentially, the 
diffraction limit reflects the fundamental Fourier-Heisenberg uncertainty principle. However, 
already in 1952, Toraldo di Francia [2] noted that this limit does not impose a constraint on 
smallest-achievable localized spot of light for an optical system of given numerical aperture. 
Decades later, Yakir Aharonov et al. published several pioneering papers on the seemingly 
unrelated problem of quantum measurements [3], and soon thereafter Michael Berry brought 
the concept into the general domain of waves, and started the research direction now termed 
superoscillations [4]. Berry explored superoscillatory functions, which, in finite, yet 
arbitrarily large regions of space oscillate faster than the fastest (highest) Fourier component 
of the entire function. Such superoscillations occur naturally in optics near optical phase 
singularities [5] or in random optical speckle patterns [6], wherever the local gradient of the 
phase of the field exceeds the maximum Fourier component of the spectrum of the entire 
field. Further, it is possible to design superoscillatory optical fields. The idea of using 
superoscillations for sub-diffraction limited light focusing [2,7,8] and even subwavelength 
super-resolution imaging [9–11] has been successfully proven in experiments. However, these 
methods generally produce a field with superoscillatory features occurring in a single plane of 
propagation, while moving away from this plane causes very quick broadening, typically 
within a propagation distance of few wavelengths. Notwithstanding the great potential of 
applying superoscillations to super-resolution imaging [11,12], the quick spreading of these 
super-oscillatory “speckles” makes them inapplicable in a wide range of situations, such as, 
for example, for optical manipulation of small particles over long trajectories, or for phase 
imaging of thick biological samples. Also important, the very rapid spreading of optical 
superoscillations generated through current techniques makes them unusable for encoding and 
transmitting sub-wavelength information carried upon the propagating beam, which is a 
conceptually important prospect for applications of superoscillatory beams in information 
sciences. Although [12] demonstrates a focal spot that is extended in the axial direction 
considerably beyond what was shown earlier, this focal spot in [12] was not designed to be 
non-diffracting for large distances, hence it indeed broadened within a few wavelengths of 
propagation away from the focal plane. 

Clearly, for some time, it seemed that superoscillatory beams are fundamentally doomed 
to fade away through diffraction broadening at a rate that would severely limit their 
usefulness. However, two years ago Makris and Psaltis [13] introduced a conceptually 
important idea, demonstrating ‘superoscillatory shape-preserving beams’. Using a 
superposition of shape-preserving 'Bessel beams' [14] of different orders but of the same 
transverse wavenumber, the authors of [13] showed that it is theoretically possible to generate 
non-broadening optical beams incorporating sub-diffraction-limited features. However, to the 
best of our knowledge, non-diffracting superoscillations have never been generated 
experimentally. Further, although in essence the method in [13] can be used to design any 
arbitrarily shaped diffractionless superoscillatory pattern, it would require solving an infinite 
number of equations simultaneously to achieve this goal. 

Here, we present the first experiments on nondiffracting optical superoscillations. We 
demonstrate theoretical and experimental control over the shape, size, and spatial orientation 
of sub-diffraction-limited features, and demonstrate their transmission for long distances 
without 'smearing' due to diffraction broadening. Our beams display arbitrarily small 
superoscillatory features with a predetermined field distribution. We experimentally design 
beams having 'line-shaped' superoscillatory features as small as 14% of the diffraction limit of 
our system, and having negligible diffraction broadening over propagation distances as long 
as 250 Rayleigh lengths. Importantly, we demonstrate versatile control over the features of 
these beams, both in theory and experiment: we control the width, and rotational orientation 
of the line-shaped superoscillations at will. In addition, we derive a general analytic 
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methodology for generating arbitrarily-shaped nondiffracting superoscillatory optical beams. 
Our derivation ultimately results in analytic expressions, hence in contrast to the method in 
[13], it facilitates arbitrary shaping of the beams without the need for solving any equations at 
all. Last, we explore the power-transmittance efficiency of the sub-diffraction limited 
features, as function of their spatial extent, feature size, and Fourier decomposition. We 
present general conditions for generating arbitrarily shaped superoscillations approximating a 
known function in space to finite Taylor and/or Fourier expansion order. The spatial extent of 
the superoscillation, and the quality of the arbitrary shaping come at the expense of the power 
transmitted with the diffractionless superoscillatory feature. The method we present is 
general, allowing straight forward engineering of diffractionless superoscillations with 
predesigned parameters. As examples, we design arrays of diffractionless superoscillations 
shaped as sinusoidal and rectangular waveforms. 

Methodology 

We begin by considering a distribution of a superposition of optical Bessel beams of different 
orders, which in general can be mutually shifted from one another in the plane transverse to 
the optical axis. The complex optical field amplitude E(r,z) is 
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( , ) ,
m
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lN
imikz

lm m r lm
m l

E r z e a J k r r e θθ −−

= =
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We use a cylindrical coordinate system ( , , )r zθ  depicted in Fig. 1. The field amplitude 

( , )E r zθ,  comprises Bessel beams of order 0 to m. There can be an arbitrary number of 

beams for each order m (l(m)). The mth order beam of index l(m), lmJ , is centered around 

| |lmr


. All of the beams share the same transverse wave number, rk . For each laterally shifted 

coordinate system, the angular coordinate is denoted as lmθ . The coordinate system is 

depicted in Fig. 1(a). Since each Bessel beam is propagation-invariant (independent of the 
axial coordinate z), and since all of the beams acquire phase with the same rate, as they 
propagate along z, their superposition is propagation-invariant as well. 

Before we present the general approach to shaping of this field, consider an example for a 
superposition of two 2nd order beams, with m = 2, l = 2 in Eq. (1). Their centers can be 
arbitrarily set on the x axis, and their relative phase can be set to π , with the resulting field 
amplitude along the x axis 

 21 21 22 22( , ) ( ) ( ( ')) ,ikz ikz
r rE x z a J k x e a J k x x e− −= − −  (2) 

where 21 22, , and ra a k   are real and positive constants. 

For small distances 1 rx k<  and lateral separations between these beams, ' 1 / rx x k− < , 

Eq. (2) can be approximated to 
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For 22 21a a> , E(x,z) has a maximum at max 22 22 21' / ( )x x a a a= ⋅ − , and crosses zero at 

22 22 21'/x a x a a = −   and at 22 22 21'/x a x a a = +  . Hence, the optical intensity 

has a single arbitrarily small feature of width [ ]22 21 21 222 '/x a a x a aΔ = −  between these two 

zeros. This feature can be made arbitrarily small since x' can be made arbitrarily small, at the 

expense of the reduction in the power carried by this feature. Namely, since ( )2

max( ) 'E x x , 
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the peak intensity scales as ( )4

max( ) 'I x x , and the power (per unit length in the y direction) 

carried by this small feature during propagation along the z direction scales as ( )5
'P x . 

This is, of course, only one particular example of the general trend [4] that the optical power 
carried within superoscillatory features decays with decreasing feature size. 

Experimental 

We realize the above example experimentally in the apparatus sketched in Fig. 1. Two plane 
waves emerging from the same laser (HeNe, 633nmλ = ) propagate in the z direction, 
illuminating a phase mask. The mask carries the phase mθ , where θ  is the angle in polar 
coordinates in the plane of the mask, and m is generally an integer. In this example m = 2. The 
Axicon in our system has a base angle of 2° and a refractive index ~1.48,hence a light ray 
incident perpendicularly exits the Axicon with an angle of ~0.96°. The numerical aperture 
(NA) of our system is thus 0.0168. The diffraction limit of our system, given by / (2 )NAλ ⋅ , 

is roughly 19µm.The beams are laterally shifted from one another and superimposed before 
passing through a conical lens (axicon). At the output of the lens, the beams approximate two 
laterally shifted 2nd order Bessel beams with complex field amplitudes 

( )
1 21 2 ( )i m kz

rE A e J k rθ −= , and ( ) ( )2 22 2 ( ' )i m kz
rE A e J k r rθ −= −  respectively. The complex 

coefficients 21 22A and A   are set by attenuators and by choosing the relative phase between the 

beams in the apparatus. The field is made identical to the field in Eq. (3) along the x-axis, by 
choosing 22 22 21 22; /10iA a A e Aπ= = ⋅  . Since rk is set solely by the axicon's focal power, the 

resulting diffraction pattern is non-broadening to large distances, limited only by the 
diameters of the conical lens and of the beams. Alignment of the beams in this setup is easily 
controllable. Angular misalignment of the beams with respect to one another results in the 
broadening or focusing of the superoscillation as it propagates, where the angle of focusing or 
broadening scales linearly with the angle of misalignment. As a matter of fact, this degree of 
freedom can be used to 'intentionally misalign' the beams, generating a superoscillation which 
varies its width as it propagates to a known degree. With respect to lateral misalignment of 
the beams, the superoscillation's width scales roughly linearly with the lateral displacement of 
the beams. This degree of freedom is also easy to control in our system. Controlling the 
relative phase between the beams to sub-micrometer scale is essential in this apparatus, since 
on-axis jitter of the beams relative to one another may cause unwanted destructive 
interference of the beams. A way to avoid this problem is to use a thick phase mask, and just 
one arm of the apparatus: then it is possible to superimpose the Bessel beam with its own 
optical 'ghost' generated by reflection within the thick phase mask. Tilting the mask with 
respect to the direction of the incoming beam can provide sensitive control over the lateral 
shift between the beams. 
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Fig. 1. Schematic of the experimental setup (not to scale). A continuous wave laser beam is 
spatially filtered (spatial filter 'SF') and is subsequently broadened and re-collimated, and then 
split in two, each separate branch acquiring a spiral phase mφ when passing through phase 

plate 'VPP1',' VPP2. The lower branch passes through an attenuator ('AT') which sets the ratio 
of intensities between the beams. The upper branch can be laterally shifted in the xy plane 
using a telescopic system mounted on a 3D micrometric stage. The beams are recombined and 
pass through an axicon 'AX'. The resultant two Bessel beams are then superimposed to give a 
superoscillatory non-broadening beam. The beam is measured with a camera ('C') equipped 
with a microscope objective. The camera can slide along the z-axis, obtaining images of the xy 
shape of the beam at different propagation planes. Inset: Coordinate system used throughout 
this paper. 

The experimental results, constituting the first demonstration of non-diffracting optical 
superoscillations, are presented in Figs. 2 and 3. Figure 2 shows the asymmetric superposition 
of 2nd order Bessel beams (Eq. (3)), which is shaped like a line. We vary the lateral shift 
between the beams ( 'x ) and hence xΔ , with a simple micrometer, thus varying the width of 
the superoscillatory line-feature. The size can be accurately and continuously varied from 
10%-50% of the diffraction limit of the system, D (Fig. 2 and inset). The peak intensity of the 
superoscillatory feature decays with the 4th power of its width, in accordance with the 
predictions above. 

We now demonstrate experimental control over the properties of the superoscillatory 
features. In Fig. 3(a), we present the rotation of the superoscillatory feature by arbitrarily 
rotating the x-axis connecting the centers of the two 2nd order Bessel beams in the xy plane. 
In Fig. 3(b)-3(c), we show that this beam is indeed shape-preserving: the Superoscillatory 
feature stays perfectly intact, maintaining its widths, while propagating for distances of over 
250 Rayleigh lengths. 
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Fig. 2. Experimental demonstration of optical shape-preserving beams having sub-diffraction-
limited superoscillatory (SO) features. An asymmetric superposition of 2nd order Bessel 
beams (whose intensity distribution transverse to the propagation direction is shown at the 
lower right corner) exhibits line-shaped superoscillatory features. The intensity distributions of 
three such superoscillations are magnified and presented in 3D layouts surrounded with red 
rectangles on top. One dimensional cross sections of these superoscillations along the black 
dashed lines are presented above the 3D plots. The presented features (whose RMS width is as 
small as 4µm) are significantly smaller than the diffraction limit of the system, 19µm. Features 
as small as 2.5µm were also measured (see inset). We demonstrate control over the width of 
the feature, decreasing it from 50% (upper left) and down to 20% (upper right) of the 
diffraction limit. The intensity of the features decays accordingly. Inset: Power carried by the 
superoscillatory feature, exhibiting decay with the 4th power of its width, in accordance with 
our analytic derivation. 
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Fig. 3. (a) Experiments displaying designed rotation of an elongated superoscillation at three 
different orientations, (i-iii). The black arrows mark the direction of the long dimension of the 
superoscillation. (b) Shape-preserving propagation of the superoscillatory feature: The feature 
is measured at z = 0 (left) and after propagating 250 Rayleigh lengths (ZR) (middle), 
maintaining its width while propagating. The lower images are 2D intensity distributions of the 
superoscillatory features, and the graphs above them are intensity cross-sections of those 
distributions, taken along the blue dashed line. The propagation dynamics show good 
agreement with theoretical prediction (right). (c) Detailed propagation dynamics, showing the 
cross-section of the superoscillation as it propagates along the propagation axis for 250 
Rayleigh lengths. The beam intensity is normalized to unity at each plane for clarity of 
observation. Inset: width of the superoscillation between its zeros, as function of propagation 
distance – exhibiting almost a flat dependence. The superoscillations exhibits some minor 
focusing as it propagates, due to slight angular misalignment of the beams. 

Arbitrarily shaped superoscillations 

We now introduce a general approach for generating arbitrarily shaped non-broadening 
superoscillatory beams using superpositions of high order Bessel beams. For this we consider 
the field comprising a superposition of superoscillations as before, but we limit our derivation 
to the case where the centers of all of the beams are set at the origin. This also inevitably 
introduces another simplification to the field in Eq. (1), since all l instances of a mth order 
Bessel beam are now degenerate, and the field can now be written as 
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In [13], Makris and Psaltis showed that, in this case, it is possible to tailor the positions of 
the zeros and finite values of the field at any point in the r θ−  plane. In essence the method 
in [13] can hence be used to generate arbitrary shaped superoscillatory beams. However, in 
practice this would require simultaneously solving an infinite number of equations. In 
contrast, we take a different approach, deriving analytic solutions that allow generation of 
nondiffracting superoscillations with any predetermined shape, without the need for 
equation-solving at all. Choosing as before the axis of the superoscillation as x, we 
approximate the field in Eq. (4) for 1/ rx k<< , which is always the case when considering 

sub-diffraction limited features. The field along the x-axis is 
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where we set 2 0j ka − =  for 2j k N− >  and for 2 0j k− <  . 

We approximate each coefficient of the jth order polynomial term jx in Eq. (5) to include 
only the contribution from the highest order coefficient ja  (k = 0, s = 0). For instance, we 

approximate the coefficient for the parabolic term ( ) ( )2 202 2~
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This approximation is justified, since, as we show below, the coefficients ma grow 

exponentially with m. Numerical comparison between superoscillations designed using Eq 
[5], or through its approximated version - Eq [6], are presented in Fig. 4, showing that for all 
practical purposes, these two forms are only negligibly different from one another. 

To design an arbitrarily shaped superoscillatory optical field whose complex amplitude 
follows the function f(x), at least on the x-axis, we expand the field in a Taylor series, 

 ( ) , m=0,1,2...m
mm

f x b x=    (7) 

Matching the coefficients of Eq. (6) to those of the Taylor expansion, Eq. (7), an 
arbitrarily shaped superoscillation can be generated if the amplitudes ma are set to 
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Hence, the complex field amplitude for a field realizing a superoscillatory feature f(x) can 
be generated as a superposition of Bessel beams, such as 
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Equation (9) is a particularly intuitive representation of the field, which shows some 
quantitatively useful properties. The Bessel beam of order m contributes the mth order term of 
the Taylor's expansion to the desired superoscillatory field. Hence, it is clear that higher order 
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Bessel beams are required for extending the spatial support of the superoscillatory region of 
these non-broadening wavepackets. However, Eq. (9) also includes multiplication of the mth 
order beam by 2m , hence the ratio between the peak intensity at the superoscillatory region, 
henceforth denoted SOI , and the peak intensity of the beam outside the superoscillatory 

region, (which is also the peak intensity of the entire beam, henceforth denoted beamI ) scales 

as 

 2/ ~ 2 .N
SO beamR I I −≡  (10) 

For a beam of constant given power, R is roughly a measure of the fraction of power that 
can be carried by the superoscillatory region of the propagation-invariant beam. It is then 
apparent that extending the spatial support of the superoscillation requires higher orders of the 
Taylor expansion for f(x), and this comes at the expense of an exponential decrease in the 
power the superoscillation. Furthermore, shrinking the entire superoscillatory region 
(approximated by the mth order Taylor's series) by a factor of r increases rk by a factor mr , 

and hence decreases the powers ratio R by a factor of 2mr − . 
We demonstrate these ideas theoretically with an array of sinusoidally and rectangularly-

shaped (Figs. 4(a)-4(b)) shaped non-broadening superoscillations. The superoscillation 
precisely matches the pre-designed shape ( ) sin( )f x ax= for m → ∞ . Given the constraints 

imposed by Eq. (10), this implies that the power carried by the superoscillatory region of the 
field becomes vanishingly small as m increases. Figure 4(a) shows the generation of two 
sinusoidal superoscillations. Here we calculate the superposition of Bessel beams up to order 
3. Extending the superoscillatory region to have 6 superoscillations (Fig. 4(b)) requires 19 
orders of the Taylor series of the sinusoidal waveform, hence a Bessel beam superposition up 
to order 19. 

For practical applications, encoding and transmitting a train of superoscillatory 
rectangular 'bits' in a non-broadening beam may be of importance. However, the polynomial 
(Taylor series) basis may be inconvenient for generation of such features. We demonstrate 
that a Fourier decomposition can be used, leading to a superoscillation with a field 
distribution closely matching a rectangular-pulse train. In this case, f(x) is a rectangular 
waveform with a period of length L. We expand this waveform in a sine-series, and each sine 
in a Taylor series, to obtain 
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Hence, the coefficient for the (2k + 1)th order Bessel beam is 
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And the optical field, in this case, is 
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This example is particularly insightful, since the dependence of the power carried by the 
superoscillatory region is separately dependent on the spatial 'sharpness' of the 
superoscillation, given by the Fourier order n, and the superoscillation's spatial support, 
indicated by the Taylor order k . Namely, for spatial support given by a known highest order 
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in the Taylor series k, the power scales roughly as ( )2 1

2 1
1,3,5,...

k

k
n

b n
+

+
=

=  . Although our work 

allows versatile design of sub diffraction-limited non-diffracting optical features that are in 
principle suitable for encoding and transmitting information for long distances, the strong 
decay of the power transmitted in the superoscillation (with increasing spatial extent and 
sharpness – necessitating high Taylor and Fourier components respectively) may ultimately 
render the whole idea of using superoscillations for long-range transmission of sub-
diffraction-limit information impractical. 

 

Fig. 4. Designing non-diffraction superoscillations with pre-determined shapes. (a) Setting 
( ) sin( )f x ax= , 'a' being a constant, we construct a beam with two sinusoidal intensity 

features, each of width ~
0

/ 7D , 0D  being the diffraction limit of the system. Here the 

superposition is of Bessel Beams up to m = 3. The lower graph shows the 2D intensity 
distribution, and the upper graph is its horizontal cross-section. (b) Extending the spatial 
support of the superoscillatory region to include 6 sinusiodal superoscillations requires 
superposition of Bessel beams up to order 19. (c) Generating a rectangular array of 
superoscillatory features through superposition of Bessel beams up to order 80, and Fourier 
decomposition of f(x) up to order 3. (d) Ratio between the peak intensity of the beam to the 
intensity of the superoscillatory region, as a function of the spatial support of the 
superoscillatory region. This dependence is roughly exponential, as expected. 

Discussion and conclusion 

Our work brings the concept of non-broadening superoscillatory optical beams from theory to 
the lab, presenting new types of superoscillatory shape-preserving beams of high versatility. 
Our beams feature control over new degrees of freedom, such as asymmetry and rotational 
orientation. Our general methodology makes it possible to design any predesigned 
superoscillatory non-broadening optical field in an arbitrary large regions of space, and to 
predesign important relevant parameters such as the power it carries. The versatility of these 
new beams promotes new opportunities in fields ranging from sub-wavelength phase imaging 
of thick, transparent biological samples, to optical manipulation of particles and fluids at the 
sub-wavelength scale, and subwavelength 3D optical writing. As such, we envision that this 
first experimental demonstration will soon prove an important tool in a range of applications, 
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and initiate interest in further scientific research of this type of beams –making them an active 
area of research. 
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